Polymer Flow Processing Design

- Simulation/Design Approach
 - Nonlinear FEA solved via NR iteration
 - DSA via Adjoint variable and DD methods
 - Gradient-based optimization (DOT, VRAND)

- Injection Molding Process Design
 find: gate locations, gate pressures
 to min: fill time
 subject to: injection rate
 clamp force
 flow front uniformity

- Sheet extrusion die cavity design
 find: die cavity geometry, inlet pressure
 to min: inlet pressure
 subject to: exit velocity uniformity
 prescribed exit flow rate

- Injection Molding Process Design

 - Gate locations:
 - Gate 1: $b_1 = 0.5$
 - Gate 2: $b_2 = 0.733$

 - Fill time:
 - Initial Design: 4.75 sec
 - Optimal Design: 2.90 sec
 - Improvement: 39%

 - Initial Design:
 - Gate 1: $b_1 = 0.5$
 - Gate 2: $b_2 = 0.5$
 - Fill time: 4.64 sec
 - Half-gap: 2.82 mm

 - Optimal Design:
 - Gate 1: $b_1 = 0.412$
 - Gate 2: $b_2 = 0.733$
 - Fill time: 2.90 sec
 - Half-gap: 2.41 mm

- Velocity Vectors
 - Initial Design
 - Optimal Design

- Distance along die exit (mm)
 - LDPE @ 473K
 - LDPE @ 453K
 - LDPE @ 433K

- Die flow
 - Initial Design
 - Optimal Design

-half-gap (mm)